

Benchmarking and the Alberta Report – a

Government/Industry Partnership

Patricia Armitage, M.Eng., P.Eng. Director, Architecture/Engineering/Construction Industry Development Branch Alberta Finance and Enterprise Larry Sondrol Stephen Revay FCJC CCC COAA Co-Chairs Benchmarking Committee

Importance of the Oil Sands to the Canadian Economy

- Canada's oil reserves are second in the world behind Saudi Arabia
- Of 179 billion barrels of Canada's oil reserves, the oil sands represents 97%
- For each permanent oil sands related job, 9 additional direct, indirect and induced jobs are created in Canada
- Currently 240,000 jobs in Canada are directly or indirectly linked to the oil sands
- Between 2000 and 2020, oil sands development has the potential to generate at least \$124B (Cdn) in royalty and tax revenues for Canada's federal and provincial governments

Why Benchmarking in Alberta ?

- Alberta was experiencing major cost overruns on it's mega-projects
- Many of these mega-projects were in Alberta's oil sands sector
- Oil sands are an important and growing sector of Alberta's economy
- Something had to be done to rein in rising construction costs, Alberta was being viewed as a high cost jurisdiction in which to do business

Alberta Government Involvement

- Due to rising costs for developing the oilsands, the Alberta government could see the province's competitive advantage being eroded and was having trouble attracting foreign investment
- The Alberta government supports the oil sands sector in it's pursuit of higher productivity and lower development costs
- Alberta always compared unfavourably to the US Gulf Coast for costs and productivity
- What gets measured gets improved!

- Benchmarking initiative started in 2003 with the development of Alberta specific metrics (isolated, camp conditions, winter weather, size)
- The Construction Industry Institute (CII) chosen for their expertise in benchmarking
- Phase I now complete
 - Company reports generated for participants
 - Alberta Report done
- About to embark on Phase II
 - Many enhancements added
 - Alberta Report 2

- 37 (out of a total of 78) projects were analyzed in August 2008 resulting in the "Alberta Report"
- 27 of the 37 oil and gas, half are grassroots
- Total installed costs range from less than \$5M (Cdn) to over \$100M (Cdn), with eight projects over \$1B (Cdn).
 Average = \$368M (Cdn)
- In general, Alberta not so bad with respect to measures of construction productivity when compared to US projects

Alberta Report – An Overview

 Productivity metrics assessed both engineering and construction productivity (overall and in specific disciplines)

- Metrics are defined as ratios of work hours to quantities
- Performance metrics used included cost, schedule, safety, change and re-work

• 14 Best Practices assessed for impact on performance metrics

- 18 COAA specific metrics for Alberta included
 - Direct and indirect costs
 - Use of modularization
 - Peak workforce
 - Overtime
- Comparisons made between Alberta projects and comparable projects in the CII database for the USA

Alberta Report - Costs

- 19% average cost growth for Alberta projects (actual costs exceeded initial planned cost by 19%).
- Cost growth lower as % detailed engineering complete increased
- Use of Project Risk Assessment Best Practice reduced project cost growth
- High indirect costs (additional supervision, bussing, camps, etc.)
 - Averaged 21% of total project costs
 - Indirect cost growth increased as project size increased
- Best Practice of Planning for Startup reduced cost growth in startup

Alberta Report - Schedule

- Average schedule growth was 17%
- Constructability Assessments led to reduced schedule growth

Alberta/USA Comparisons

- US database 353 projects, 250 Gulf Coast projects
- Similar industrial projects no adjustments made for differences in project size, economic conditions or other significant project drivers.
- Median project size in Alberta dataset is \$186M (Cdn) vs. \$40M (Cdn) in the US dataset
- Project cost growth much higher in Alberta (19%) vs. US (3%)
- Alberta project cost growth had much wider range (-27% to 69%)
- Development and scope changes similar between Alberta and the US

- Engineering productivity measured as the ratio of direct engineering hours per installed quantity in the field
- Comparisons based on weighted averages (ie: larger projects count more in the average productivity than smaller projects)
- Engineering productivity for concrete better in Alberta than in US
- Structural steel engineering productivity worse in Alberta
- Engineering productivity for piping comparable.

Alberta/Gulf Coast Comparisons – Construction Productivity

- Construction productivity measured as the ratio of field direct work hours per installed quantity
- Comparisons based on weighted averages
- Construction productivity for concrete slightly worse in Alberta
- Instrumentation devices construction productivity much worse in Alberta (non-weighted average between the two was comparable, further research is warranted)
- Construction productivity for structural steel was comparable
- Insulation construction productivity was better for the Alberta dataset

Economy of Scale may not be equal

Construction Approach is Similar

Alberta Report - Results

- Before this study it was perceived that Alberta's productivity was much worse overall than similar US based projects
- Productivity similar between Alberta and US
- So why the higher cost growth in Alberta vs. US data?
 - Average wage rates are higher in Alberta than where most of the US projects occur
 - Indirect costs are higher on mega-projects than on smaller projects
 - Initial cost estimates on mega projects weak
 - Starting projects with very low % engineering complete

Alberta Report - Appreciation

Phase 1 Funding Partners

- Alberta Finance and Enterprise
- Construction Owner's Association of Alberta
- Several Owners & Contractors

Construction industry Institute (CII)

- Dr. Stephen Mulva
- Research Students

COAA Benchmarking Phase II

3-Step Process

Phase II Features

- Customized Questionnaire Development
 - Absolute Metrics
 - Indirect Costs
 - Pipeline Projects
 - Modularization (Productivity in Fab Yard)

Alberta-Based Benchmarking Lab

- Full-Time Alberta-Based Support
- Real-Time (OTJ) Training
- Alberta Report #2

Phase II System Enhancements

- Internal (Process Unit, Project specific) Benchmarks
- Automated Key Reports
- Company-Level Reports
- Executive Dashboard
- Full Data Mining Capability
 - Comparisons with CII (U.S.) Database
 - "Level 1" Productivity Metrics (All Disciplines)

Project-Level (Eng) Productivity

Executive (Portfolio) Dashboard

All Projects

Number of Project : 20

Overall Project Performance

Project Key Report-Construction Productivity-Structural Steel

		Structural S	teel						
Metric	Wk-Hrs	Installed Quantity (MT)	Unit Rate (Wk- Hrs/MT)	Weighted Database Mean	<mark>4Q</mark>	3Q	2Q ′	IQ	n
Structural Steel	62,067	744.8	83.33	49.961	0 2	5 50	75	100	s
Pipe Racks & Utility Bridge	20,765	261.3	79.48	33.628	0 2	5 50	75	100	s
Miscellaneous Steel	13,230	114.3	115.74	116.256	0 2	5 50	75	100	s
Total Structural Steel Productivity	96,062	1,120.4	85.74		0 2	5 50	75	100	S
Estimated Total Structural Steel Productivity Rates	Est. Wk- Hrs	Est. Quantity (MT)	Est. Unit Rate (Wk-Hrs/ MT)	28.267	<mark>40</mark>	3Q	2Q /	IQ	n
	79,684	1,038.7	76.71		0 2	5 50	75	100	s
Total Installed Unit Cost	Actual (S/MT)	Estimated (\$/MT)	Actual DB Mean (\$/MT)		<mark>40</mark>	3Q	2Q ′	Q	n
	9.628.5	9.265.4	С		С				C

Project Key Report- Best Practices

Practices												
Metric	Project Score	Database Mean		n								
Front End Planning	1.350	6.745	0 25 50 75 100	<u>s</u>								
Project Risk Assessment	10.000	7.813	0 25 50 75 100	<u>s</u>								
Team Building	8.906	7.019	0 25 50 75 100	<u>s</u>								
Alignment during Front End Planning	9.375	7.952	0 25 50 75 100	<u>s</u>								
Design for Maintainability	8.929	7.206	0 25 50 75 100	<u>s</u>								
Constructability	10.000	8.946	0 25 50 75 100	<u>s</u>								
Materials Management	8.333	6.589	0 25 50 75 100	<u>s</u>								
Project Change Management	8.958	7.696	0 25 50 75 100	<u>s</u>								
Safety (Zero Accidents)	7.273	7.848	0 25 50 75 100	<u>s</u>								
Quality Management	6.893	6.584	0 25 50 75 100	<u>s</u>								
Automation/Integration (AI) Technology	9.615	5.683	0 25 50 75 100	<u>s</u>								
Planning for Startup	9.731	7.885	0 25 50 75 100	<u>s</u>								
Pre Fabrication, Pre Assembly, Modularization and Offsite Fab. (PP_MOF)	9.167	9.427	0 25 50 75 100	<u>s</u>								
Workface Planning	N/A	6.865	N/A	S								

Phase 2 - Appreciation

Phase 2 Partners thru 2010

- Alberta Finance and Enterprise
- Construction Owner's Association of Alberta (COAA)
- Construction Industry institute (CII)
- Owners & Contractors
 - Nexen Inc.
 - Shell Canada Energy
 - Suncor Energy Inc.
 - StatoilHydro Canada Ltd.
 - MEG Worley Ltd.
 - Bantrel
 - Enbridge Inc.
 - JV Driver Projects Inc.
 - Boilermaker Contractor Association (BCA)
 - Electrical Contractors Association of Alberta (ECAA)
 - Industrial Contractors Association of Alberta (ICA)

Page --25 Several other Potential Interested Owners & Contractors

MORE PROJECTS REQUIRED!!

Workshops

- Workshop Sessions @12:45 and 2:30
- Benchmarking Phase 2 Plan
- Alberta Report Overview of Results

Engineering Complete Before Construction Start

Construction Indirect Cost Growth

Page • 28